Uniqueness of solution to the Kolmogorov’s forward equation: Applications to White Noise Theory of Filtering

نویسندگان

  • Abhay G. Bhatt
  • Rajeeva L. Karandikar
چکیده

We consider a signal process X taking values in a complete, separable metric space E. X is assumed to be a Markov process charachterized via the martingale problem for an operator A. In the context of the finitely additive white noise theory of filtering, we show that the optimal filter Γt(y) is the unique solution of the analogue of the Zakai equation for every y, not necessarily continuous. This is done by first proving uniqueness of solution to a (perturbed) measure valued evolution equation associated with A. An additional assumption of uniqueness of the local martingale problem for A is imposed. AMS 2000 subject classification: Primary 60G35 Secondary 60J35, 60G44

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of Solution to the Kolmogorov Forward Equation: Applications to White Noise Theory of Filtering

We consider a signal process X taking values in a complete, separable metric space E. X is assumed to be a Markov process charachterized via the martingale problem for an operator A. In the context of the finitely additive white noise theory of filtering, we show that the optimal filter Γt(y) is the unique solution of the analogue of the Zakai equation for every y, not necessarily continuous. T...

متن کامل

Application of the Kalman-Bucy filter in the stochastic differential equation for the modeling of RL circuit

In this paper, we present an application of the stochastic calculusto the problem of modeling electrical networks. The filtering problem have animportant role in the theory of stochastic differential equations(SDEs). In thisarticle, we present an application of the continuous Kalman-Bucy filter for a RLcircuit. The deterministic model of the circuit is replaced by a stochastic model byadding a ...

متن کامل

Generalized solution of Sine-Gordon equation

In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.

متن کامل

On Existence and Uniqueness of Solution of Fuzzy Fractional Differential Equations

The purpose of this paper is to study the fuzzy fractional differentialequations. We prove that fuzzy fractional differential equation isequivalent to the fuzzy integral equation and then using this equivalenceexistence and uniqueness result is establish. Fuzzy derivative is considerin the Goetschel-Voxman sense and fractional derivative is consider in theRiemann Liouville sense. At the end, we...

متن کامل

Regularized fractional derivatives in Colombeau algebra

The present study aims at indicating the existence and uniqueness result of system in extended colombeau algebra. The Caputo fractional derivative is used for solving the system of ODEs. In addition, Riesz fractional derivative of  Colombeau generalized algebra is considered. The purpose of introducing Riesz fractional derivative is regularizing it in Colombeau sense. We also give a solution to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009